Photolytic processing of secondary organic aerosols dissolved in cloud droplets.
نویسندگان
چکیده
The effect of UV irradiation on the molecular composition of aqueous extracts of secondary organic aerosol (SOA) was investigated. SOA was prepared by the dark reaction of ozone and d-limonene at 0.05-1 ppm precursor concentrations and collected with a particle-into-liquid sampler (PILS). The PILS extracts were photolyzed by 300-400 nm radiation for up to 24 h. Water-soluble SOA constituents were analyzed using high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) at different stages of photolysis for all SOA precursor concentrations. Exposure to UV radiation increased the average O/C ratio and decreased the average double bond equivalent (DBE) of the dissolved SOA compounds. Oligomeric compounds were significantly decreased by photolysis relative to the monomeric compounds. Direct pH measurements showed that acidic compounds increased in abundance upon photolysis. Methanol reactivity analysis revealed significant photodissociation of molecules containing carbonyl groups and the formation of carboxylic acids. Aldehydes, such as limononaldehyde, were almost completely removed. The removal of carbonyls was further confirmed by the UV/Vis absorption spectroscopy of the SOA extracts where the absorbance in the carbonyl n→π* band decreased significantly upon photolysis. The effective quantum yield (the number of carbonyls destroyed per photon absorbed) was estimated as ∼0.03. The total concentration of peroxides did not change significantly during photolysis as quantified with an iodometric test. Although organic peroxides were photolyzed, the likely end products of photolysis were smaller peroxides, including hydrogen peroxide, resulting in a no net change in the peroxide content. Photolysis of dry limonene SOA deposited on substrates was investigated in a separate set of experiments. The observed effects on the average O/C and DBE were similar to the aqueous photolysis, but the extent of chemical change was smaller in dry SOA. Our results suggest that biogenic SOA dissolved in cloud and fog droplets will undergo significant photolytic processing on a time scale of hours to days. This type of photolytic processing may account for the discrepancy between the higher values of O/C measured in the field experiments relative to the laboratory measurements on SOA in smog chambers. In addition, the direct photolysis of oligomeric compounds may be responsible for the scarcity of their observation in the field.
منابع مشابه
Effects of surface-active organic matter on carbon dioxide nucleation in atmospheric wet aerosols: a molecular dynamics study.
Organic matter (OM) uptake in cloud droplets produces water-soluble secondary organic aerosols (SOA) via aqueous chemistry. These play a significant role in aerosol properties. We report the effects of OM uptake in wet aerosols, in terms of the dissolved-to-gas carbon dioxide nucleation using molecular dynamics (MD) simulations. Carbon dioxide has been implicated in the natural rainwater as wel...
متن کاملCloud Processing of Gases and Aerosols in Air Quality Modeling
The representations of cloud processing of gases and aerosols in some of the current state-of-the-art regional air quality models in North America and Europe are reviewed. Key processes reviewed include aerosol activation (or nucleation scavenging of aerosols), aqueous-phase chemistry, and wet deposition/removal of atmospheric tracers. It was found that models vary considerably in the parameter...
متن کاملThèse de doctorat de l'Université Paris-Est
Organic aerosol formation in the atmosphere is investigated via the developpement of a new model named H2O (Hydrohilic/Hydrophobic Organics). First, a parameterization is developped to take into account secondary organic aerosol formation from isoprene oxidation. It takes into account the e ect of nitrogen oxides on organic aerosol formation and the hydrophilic properties of the aerosols. This ...
متن کاملIsoprene forms secondary organic aerosol through cloud processing: model simulations.
Isoprene accounts for more than half of non-methane volatile organics globally. Despite extensive experimentation, homogeneous formation of secondary organic aerosol (SOA) from isoprene remains unproven. Herein, an incloud process is identified in which isoprene produces SOA. Interstitial oxidation of isoprene produces water-soluble aldehydes that react in cloud droplets to form organic acids. ...
متن کاملNatural aerosols explain seasonal and spatial patterns of Southern Ocean cloud albedo
Atmospheric aerosols, suspended solid and liquid particles, act as nucleation sites for cloud drop formation, affecting clouds and cloud properties-ultimately influencing the cloud dynamics, lifetime, water path, and areal extent that determine the reflectivity (albedo) of clouds. The concentration N d of droplets in clouds that influences planetary albedo is sensitive to the availability of ae...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 13 26 شماره
صفحات -
تاریخ انتشار 2011